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Brunswick, Canada E3B 5A3 and Department of Modern Physics, China University of 
Science and Technology, Hefei, Anhui, People’s Republic of China 
I AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA 

Received 26 April 1988 

Abstract. Using the IWOP technique (integration within an ordered product), we find 
canonical coherent-state representations of two kinds of squeeze operators. These rep- 
resentations manifestly show that they are quantum maps imaged by certain symplectic 
transformations in coordinate-momentum phase space. In terms of this formalism the 
coherent-state propagator of parametric amplifiers is easily obtained. 

Squeezed states are now of considerable interest because of their potential application 
to precision interferometry, optical communication and gravitational wave detection 
[l]. In [2] a new approach for calculating the normally ordered form of the squeeze 
operators was introduced, which is based on the technique of ‘integration within an 
ordered product’ (IWOP) [3] and has the merit of showing the squeezing property from 
the outset. For the single-mode case, the squeeze operator has the following coherent- 
state representation: 

= exp(-iat2 tanh r) exp[-(ata +f) In cosh r] exp(4a2 tanh r) .  ( 1 ’ )  

Here [a, at]  = 1 and 

Id= IP, (I) = exp[i(pQ - 4P)IlO) 

denotes the canonical coherent states [4], which satisfy 
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xi 
For the two-mode squeeze operator, the coherent-state representation is given by 

sinhh 0 coshh 0 coshA 0 0 -sinhA ipj) ( i ] i  (3)  

coshA sinhA 

0 0 -sinhA coshh p2 P2 

where A is real, and 

= exp[-i(p: + q: +pi  + 9:) + (a t / f i ) (q l  + ip,) 

+ (bt/fi)(q2+iP2)1100). (4) 

In this letter, we give the canonical coherent-state representation for another kind of 
squeeze operator. By directly using the IWOP technique we want to show that the 
representation of exp[-;ir(a*+ a")] = U"' is given by 

U(1' = dp dq Ip cosh r - q  sinh r, q cosh r -p  sinh r)(p, q1 r real ( 5 )  
2 ~ ( s e c h  r)''2 

while the representation of exp[iA(ab+ atbt)]  = U'" is given by 

cosh A 0 0 
0 coshh -sinhA 
0 -sinhA coshA 0 

0 0 

where the matrix denotes a symplectic transformation. The normally ordered form of 
U")  and U'" can thus be obtained by integrating ( 5 )  and (6). Since U'" and U'2' 
are closely related to transformations generated by parametric amplifiers, this formalism 
leads to the coherent-state propagator for parametric amplifiers in a natural way. 

Let us now consider the single-mode case. 
Using (2) and 

lo)(~l=: exp( - u t a ) :  (7) 

exp(Aata)=: exp[(exp A - l )a ta ] :  (8) 
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as well as the IWOP technique, we have 

U(’ )  = dp d q  exp{-i(p cosh r -q  sinh r)*-i(q cosh r - p  sinh r)’ 
/2w(sech r)’” 

+ ( a t / & ) [ ( q  cosh r -p  sinh r )+ i (p  cosh r -q  sinh r)]}10) 

= 1 dpdq :exp(-;(cosh r)’(q2+p2)+-sinh2r qP 
2v(sech r)”’ Jz 

) 9 P +- (a t  cosh r - i a t  sinh r + a )  +- ( ia t  cosh r - at sinh r - ia)  - uta : Jz Jz 
= (sech r)’/’:exp[ - f i tanh r ( a Z +  at’) + ata(sech r - l)]: 

= exp(-fiat2 tanh r) exp[(ata +f) In sech r] exp(-fia2 tanh r). 
(9) 

(9‘) 

The expression for U‘” in (5) 
transformation R defined by 

(;) + ( cosh 
-sinh r 

Ip cosh r - q sinh 

can also be expressed with the help of the symplectic 

-sinh ‘) (z) R (;) 
cosh r 

r, q cosh r -p  sinh r )=  R I (9) 
Since det R = 1, we have 

Differentiating (9) with respect to r and using the following relations: 

exp(vat2)a = (a-2vat)  exp(vat2) 

exp( vat2)a2 = (a2+4v2at2-4vata - 2 v )  exp(vat2) 

we obtain 

a -- - -fiat2(sech r)’U(’)-tanh r exp(-fia” tanh r ) (a ta  +;) 
dr 

xexp[(a ta+f)  In sech r] exp(-fia2 tanh r)  -fiU“’a’(sech r)’ 
= - f i (a2+ at‘) U(’). 

With the boundary condition U‘”( r = 0) = 1 and (1 l ) ,  we find that 

U“) = exp[-;ir(a’+ a”)]  
U(’)t(R) = U ( I ) - ’ ( R )  = U(I) (R-I)  
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which indicates that U'" is unitary. Instead, when r is time dependent, on the other 
hand, following the same procedures as (12)-(15) we learn that 

I f  ar /a t  = 2f( t ) ,  it follows that 

=f(t) exp(iHot)[at2 exp(-2iot)+ u2 exp(2iwt)l exp(-iHot) U ( ' ) ( t ,  to)  

= H,( t )U"' ( t ,  to) (17) 

where 

H,(t)=-exp(iHot)f(t)[at2 exp(-2iwt)+a2 exp(2iwt)l exp(-iHot) (18) 

(19) H,= u a  a. 

From (15')-(19) we can identify U"'(t, to)  with a unitary time evolution operator in 
the interaction picture. Thus, in the Schrodinger picture the Hamiltonian which 
generates squeezing is given by 

t 

H,= w a + a + f ( t ) [ a t 2  exp(-2iwt)+a2 exp(2iwt)l. (20) 

When f(t) = K ,  a constant, (20) is just the standard Hamiltonian of a degenerate 
parametric amplifier discussed, for example, in [5]. According to a standard transfor- 
mation, the time evolution operator in the Schrodinger picture is given by 

(21) U?'(t ,  to) = exp(-iHo t )  U( ' ) ( t ,  to) exp(iHo to) 

and specifically, for (20) we have 

U?'(t, to) =exp[-fiat2exp(-2iwt) tanh r ]  exp{ata[iw(to-t)+ln sech I ] }  

x exp[-tia2 exp(2ioto) tanh rJ(sech I )*" 

r e 2  f(t') dt'. 5,1 
When f( t )  = K ,  we are led to the coherent-state representation of the propagator for 
a degenerate parametric amplifier 

(z, tlzo, to>'(ziUs(f, t,)izo) 

= exp{-fi tanh [2K(t  - t o ) ] [ z * 2  exp(-2iot)+zi exp(2iwto)] 

- f ( JZ ( '  + lzo12> + z*zo exp[ -io( r - to) ]  

x sech [2K( t - to)]} sech {[2K( t - to)]'/2}. (23 1 
In [ 5 ] ,  this result was obtained by path integral techniques. 

Now we consider the two-mode case. 
The normally ordered form of U(')  in ( 6 )  can be obtained by using the IWOP 

technique and 

~OO)(OO~ =: exp(-uta - b + b ) :  
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namely 

+ ( 1/d)[ (qi  + ipi)a + ( q ;  + ip;) bt + ( q l  - ip,)a 

+ ( q 2  - ip,)b] - u t a  - btb}: 

=sechA:exp(-iatbt tanh A )  exp[(sechA - l ) ( a t a + b t b ) ]  

x exp( -iab tanh A ) :  

=exp(- ia tb t tanhA)exp[(a ta+btb+l )  lnsechA]exp(-iab tanh A )  
(24) 

where 

p', = -q2 sinh A +p l  cosh A 

q:  = q1 cosh A -p2 sinh A 

pi = p2 cosh A - q1 sinh A 

q ;  = q2 cosh A -pl  sinh A. 
( 2 5 )  

Following the same procedure as used in deriving (14), we find that 

aU'2)/aA = -i(atbt+ab)U'*'  U'"(A = 0) = 1 (26) 

which implies that 

U(')= exp[-i(atbf+ab)A] 
U(2)t = u'21-I 

Instead, when A is time dependent, we have 

ah 
= -i(atbt+ab)U'"(t, to)- U'2'( to,  to) = 1 A ( to)  = 0. (28) 

a u ( ~ ) (  t, to) 

at  a t  

Let aA/a t  = g( t ) ,  then (28) becomes 

i a ~ ' " ( t ,  t o ) / a t  = g ( t ) ( a b + a t b t ) U ' 2 ' ( t ,  to) 

= g ( t )  exp(iWot)[ab exp(iw,t)+atbt exp(-iw,t)] exp(-iW,t)U'"(t, to) 

= W , (  t )  1, t o )  (29) 

(30) 

WO= w 1 a t a + w 2 b t b  03 E ~1 + 0 2 .  (31 )  

Similar to (17) ,  we find the Hamiltonian of the parametric amplifier in the Schrodinger 
picture 

where 

HI  ( t )  exp(iWo t ) g (  t ) [  ab exp(iw3 t )  + atbt exp( - iwj  t ) ]  exp( -iWo t )  

Hs= w,ata+  w 2  b t b +  g ( t ) [ a b  exp(iw3 t ) +  atbt exp(-iw, t)]. (32) 
The evolution operator in the Schrodinger picture is given by 
u'2' ( t ,  to) = exp(-iHot) ~ ' " ( t ,  to) exp(iHoto) 

= sech A exp[-iatbt exp(-iw, t )  tanh A ]  

xexp[(ata+btb)lnsechA+i(to- t)Ho]exp[-iabexp(io3t0) tanh A ]  

(33) 
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from which the coherent-state representation of the propagator for the parametric 
amplifier is directly obtained, for g( t )  = K ,  as 

( Z l l , Z ; , t l z 1 , Z 2 r t 0 ) ~ ( Z : , Z ; I ~ ~ ) ( t ,  to)Iz,,z*) 

= sech[ K ( t  - to)] exp( - 4 (Izl12 + 1z2I2 + 1z{I2 + Izil’) 

- i  tanh [K(t-to)][z;*z{* exp(-iw3t)+z,z2 exp(iw,t,)] 

-sech [ K ( t -  to)]{exp[iwl(to- r)]z:*zl +exp[iw2(to- t)]z;*z2}) (34) 
which agrees with (48) in [ 5 ]  (except that they have a factor of 4 in the terms which 
include tanh [ K ( t  - to)]). 

In summary, we see that the canonical coherent states and the IWOP technique 
provide a convenient way to study squeeze operators that are generated by ideal 
parametric amplifiers. 
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